Search results for "Plant Physiological Phenomena"
showing 10 items of 18 documents
Multitrophic interactions in the rhizosphere Rhizosphere microbiology: at the interface of many disciplines and expertises.
2008
The rhizosphere – the soil compartment influenced by the root, including the root itself – is the most-active microbial habitat in soils. Indeed, the release by plant roots of a significant part of their photosynthates promotes microbial abundance and activities in the rhizosphere. This investment made by plants is paid back by microbial functions, which contribute to plant nutrition and protection against soil-borne diseases. Indeed, rhizosphere microorganisms play a major role in plant growth and health and, …
Using metabarcoding to reveal and quantify plant-pollinator interactions.
2016
AbstractGiven the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 tim…
Interactions between ecological traits and host plant type explain distribution change in noctuid moths.
2009
The ecological traits of species determine how well a species can withstand threats to which it is exposed. If these predisposing traits can be identified, species that are most at risk of decline can be identified and an understanding of the processes behind the declines can be gained. We sought to determine how body size, specificity of larval host plant, overwintering stage, type of host plant, and the interactions of these traits are related to the distribution change in noctuid moths. We used data derived from the literature and analyzed the effects of traits both separately and simultaneously in the same model. When we analyzed the traits separately, it seemed the most important deter…
Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites
2019
Abstract Background Human tumors are still a major threat to human health and plant tumors negatively affect agricultural yields. Both areas of research are developing largely independent of each other. Treatment of both plant and human tumors remains unsatisfactory and novel therapy options are urgently needed. Hypothesis The concept of this paper is to compare cellular and molecular mechanisms of tumor development in plants and human beings and to explore possibilities to develop novel treatment strategies based on bioactive secondary plant metabolites. The interdisciplinary discourse may unravel commonalities and differences in the biology of plant and human tumors as basis for rational …
LOCAL ADAPTATION, RESISTANCE, AND VIRULENCE IN A HEMIPARASITIC PLANT-HOST PLANT INTERACTION
2000
Coevolution may lead to local adaptation of parasites to their sympatric hosts. Locally adapted parasites are, on average, more infectious to sympatric hosts than to allopatric hosts of the same species or their fitness on the sympatric hosts is superior to that on allopatric hosts. We tested local adaptation of a hemiparasitic plant, Rhinanthus serotinus (Scrophulariaceae), to its host plant, the grass Agrostis capillaris. Using a reciprocal cross-infection experiment, we exposed host plants from four sites to hemiparasites originating from the same four sites in a common environment. The parasites were equally able to establish haustorial connections to sympatric and allopatric hosts, and…
Priming: getting ready for battle
2006
International audience; Infection of plants by necrotizing pathogens or colonization of plant roots with certain beneficial microbes causes the induction of a unique physiological state called “priming.” The primed state can also be induced by treatment of plants with various natural and synthetic compounds. Primed plants display either faster, stronger, or both activation of the various cellular defense responses that are induced following attack by either pathogens or insects or in response to abiotic stress. Although the phenomenon has been known for decades, most progress in our understanding of priming has been made over the past few years. Here, we summarize the current knowledge of p…
NMD-Based Gene Regulation—A Strategy for Fitness Enhancement in Plants?
2019
Abstract Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental response…
Study of the Evolutionary Relationships among Limonium Species (Plumbaginaceae) Using Nuclear and Cytoplasmic Molecular Markers
2000
The genus Limonium, due to the patchiness of the natural habitats of its species as well as the high frequency of hybridization and polyploidy and the possibility of reproduction by apomixis, provides an example of all the principal mechanisms of rapid speciation of plants. As an initial study of evolution in this genus, we have analyzed intra- and interspecific variability in 17 species from section Limonium, the largest in the genus, based on RFLPs of cpDNA and nuclear rDNA ITS sequences. In the cpDNA analysis, 21 restriction enzymes were used, resulting in 779 fragments, 490 of which were variable and 339 parsimony informative. L. furfuraceum exhibited two relatively divergent cpDNA hapl…
Molecular parameters involved in bee-plant relationships: a biological and chemical approach
1987
Abstract Honeybee-plant relationships are based on a conditioning process in which olfactory (plant aroma) and gustatory cues (mainly nectars) are closely linked, leading to a selective foraging behaviour. Among crops dependent upon entomophilous cross-pollination, the sunflower has recently undergone extensive expansion due to hybrid variety selection. Sunflower hybrid seed production is strictly dependent upon pollinating insects, mainly the honeybees, but foragers may have preferences among the parental lines, leading to a lack of pollen carriage and consequently to a decrease of hybrid seed yield. In order to define the role of plant chemicals (aromas, nectars) involved in the pollinati…
Molecular mechanisms of endomembrane trafficking in plants
2021
Abstract Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, …